Computes the number of features at each stage of flagging for each mode.
Arguments
- object
a
SummarizedExperiment
orMetaboSet
object
Examples
data(example_set)
flagged <- example_set %>%
mark_nas(0) %>%
flag_detection(group = "Group") %>%
flag_quality()
#> INFO [2025-06-23 22:36:35]
#> 1% of features flagged for low detection rate
#> INFO [2025-06-23 22:36:35]
#> 91% of features flagged for low quality
flag_report(flagged)
#> Split Kept Low_quality Total Flagged Low_qc_detection
#> 1 HILIC_neg 3 17 20 17 NA
#> 2 HILIC_pos 1 18 20 19 1
#> 3 RP_neg 2 18 20 18 NA
#> 4 RP_pos 0 20 20 20 NA