Package index
-
mark_nas()
- Mark specified values as missing
-
flag_detection()
- Flag features with low detection rate
-
flag_contaminants()
- Flag contaminants based on blanks
-
correct_drift()
- Correct drift using cubic spline
-
ruvs_qc()
- Remove Unwanted Variation (RUV) between batches
-
pca_bhattacharyya_dist()
- Bhattacharyya distance between batches in PCA space
-
perform_repeatability()
- Compute repeatability measures
-
assess_quality()
- Assess quality information of features
-
quality()
- Extract quality information of features
-
flag_quality
flag_quality()
- Flag low-quality features
-
flag_report()
- A report of flagged features
-
impute_rf()
- Impute missing values using random forest
-
impute_simple()
- Simple imputation
-
cluster_features()
- Cluster correlated features originating from the same metabolite
-
compress_clusters()
- Compress clusters of features to a single feature
-
log(<MetaboSet>)
log2(<MetaboSet>)
log10(<MetaboSet>)
log(<SummarizedExperiment>)
log2(<SummarizedExperiment>)
log10(<SummarizedExperiment>)
- Logarithm
-
exponential()
- Exponential function
-
pqn_normalization()
- Probabilistic quotient normalization
-
inverse_normalize()
- Inverse-rank normalization
-
scale(<MetaboSet>)
scale(<SummarizedExperiment>)
- Scale peak table
-
visualizations()
- Write all relevant preprocessing visualizations to pdf
-
plot_injection_lm()
- Estimate the magnitude of drift
-
plot_sample_boxplots()
- Plot a boxplot for each sample
-
plot_dist_density()
- Plot distance density
-
plot_tsne()
- t-SNE scatter plot
-
plot_pca()
- PCA scatter plot
-
plot_tsne_arrows()
- t-SNE plot with arrows
-
plot_pca_arrows()
- PCA plot with arrows
-
plot_tsne_hexbin()
- t-SNE hexbin plot
-
plot_pca_hexbin()
- PCA hexbin plot
-
plot_dendrogram()
- Sample dendrogram
-
plot_sample_heatmap()
- Sample heatmap
-
plot_pca_loadings()
- PCA loadings plot
-
plot_quality()
- Plot quality metrics
-
save_batch_plots()
- Save batch correction plots
-
perform_lm()
- Linear models
-
perform_logistic()
- Logistic regression
-
perform_lmer()
- Linear mixed models
-
perform_oneway_anova()
- Welch's ANOVA and classic ANOVA
-
perform_lm_anova()
- Linear models ANOVA table
-
perform_t_test()
- Pairwise and paired t-tests
-
perform_kruskal_wallis()
- Kruskal-Wallis rank-sum test
-
perform_non_parametric()
- Pairwise and paired non-parametric tests
-
perform_correlation_tests()
- Correlation test
-
perform_auc()
- Area under curve
-
perform_homoscedasticity_tests()
- Test homoscedasticity
-
cohens_d()
- Cohen's D
-
fold_change()
- Fold change
-
summary_statistics()
- Summary statistics
-
summarize_results()
- Statistics cleaning
-
muvr_analysis()
- Multivariate modelling with minimally biased variable selection (MUVR)
-
fit_rf()
- Fit Random Forest
-
importance_rf()
- Feature importance in random forest
-
perform_permanova()
- PERMANOVA
-
save_beeswarm_plots()
- Save beeswarm plots of each feature by group
-
save_group_boxplots()
- Save box plots of each feature by group
-
save_scatter_plots()
- Save scatter plots of each feature against a set variable
-
save_subject_line_plots()
- Save line plots with mean
-
save_group_lineplots()
- Save line plots with errorbars by group
-
plot_p_histogram()
- Histogram of p-values
-
volcano_plot()
- Volcano plot
-
manhattan_plot()
- Manhattan plot
-
mz_rt_plot()
- Plot m/z vs retention time plot (cloud plot)
-
plot_effect_heatmap()
- Heatmap of effects between variables, such as correlations
-
read_from_excel()
- Read formatted Excel files
-
construct_metabosets()
- Construct MetaboSet objects
-
write_to_excel()
- Write results to Excel file
-
group_col()
`group_col<-`()
- Get and set name of the special column for group labels
-
time_col()
`time_col<-`()
- Get and set the name of the special column for time points
-
subject_col()
`subject_col<-`()
- Get and set the name of special column for subject identifiers
-
flag()
`flag<-`()
- Get and set the values in the flag column
-
drop_flagged()
- Drop flagged features
-
drop_qcs()
- Drop QC samples
-
join_fData()
- Join new columns to feature data
-
join_pData()
- Join new columns to pheno data
-
join_rowData()
- Join new columns to feature data
-
join_colData()
- Join new columns to pheno data
-
combined_data()
- Retrieve both sample information and features
-
merge_metabosets()
- Merge MetaboSet objects together
-
merge_objects()
- Merge SummarizedExperiment objects together
-
fix_object()
- Fix object for functioning of notame
-
combined_data(<MetaboSet>)
group_col(<MetaboSet>)
`group_col<-`(<MetaboSet>)
time_col(<MetaboSet>)
`time_col<-`(<MetaboSet>)
subject_col(<MetaboSet>)
`subject_col<-`(<MetaboSet>)
flag(<MetaboSet>)
`flag<-`(<MetaboSet>)
join_fData(<MetaboSet>,<data.frame>)
join_pData(<MetaboSet>,<data.frame>)
- An S4 class used to represent LC-MS datasets
-
citations()
- Show citations
-
init_log()
- Initialize log to a file
-
log_text()
- Log text to the current log file
-
finish_log()
- Finish a log
-
save_plot()
- Save plot to chosen format
-
fix_MSMS()
- Transform the MS/MS output to publication ready
-
notame
notame-package
notame
package.