Skip to contents

Tabular data preprocessing

mark_nas()
Mark specified values as missing
flag_detection()
Flag features with low detection rate
flag_contaminants()
Flag contaminants based on blanks
correct_drift()
Correct drift using cubic spline
ruvs_qc()
Remove Unwanted Variation (RUV) between batches
pca_bhattacharyya_dist()
Bhattacharyya distance between batches in PCA space
perform_repeatability()
Compute repeatability measures
assess_quality()
Assess quality information of features
quality()
Extract quality information of features
flag_quality flag_quality()
Flag low-quality features
flag_report()
A report of flagged features
impute_rf()
Impute missing values using random forest
impute_simple()
Simple imputation
cluster_features()
Cluster correlated features originating from the same metabolite
compress_clusters()
Compress clusters of features to a single feature
log(<MetaboSet>) log2(<MetaboSet>) log10(<MetaboSet>) log(<SummarizedExperiment>) log2(<SummarizedExperiment>) log10(<SummarizedExperiment>)
Logarithm
exponential()
Exponential function
pqn_normalization()
Probabilistic quotient normalization
inverse_normalize()
Inverse-rank normalization
scale(<MetaboSet>) scale(<SummarizedExperiment>)
Scale peak table

Preprocessing visualizations

visualizations()
Write all relevant preprocessing visualizations to pdf
plot_injection_lm()
Estimate the magnitude of drift
plot_sample_boxplots()
Plot a boxplot for each sample
plot_dist_density()
Plot distance density
plot_tsne()
t-SNE scatter plot
plot_pca()
PCA scatter plot
plot_tsne_arrows()
t-SNE plot with arrows
plot_pca_arrows()
PCA plot with arrows
plot_tsne_hexbin()
t-SNE hexbin plot
plot_pca_hexbin()
PCA hexbin plot
plot_dendrogram()
Sample dendrogram
plot_sample_heatmap()
Sample heatmap
plot_pca_loadings()
PCA loadings plot
plot_quality()
Plot quality metrics
save_batch_plots()
Save batch correction plots

Feature selection

Univariate analysis

perform_lm()
Linear models
perform_logistic()
Logistic regression
perform_lmer()
Linear mixed models
perform_oneway_anova()
Welch's ANOVA and classic ANOVA
perform_lm_anova()
Linear models ANOVA table
perform_t_test()
Pairwise and paired t-tests
perform_kruskal_wallis()
Kruskal-Wallis rank-sum test
perform_non_parametric()
Pairwise and paired non-parametric tests
perform_correlation_tests()
Correlation test
perform_auc()
Area under curve
perform_homoscedasticity_tests()
Test homoscedasticity
cohens_d()
Cohen's D
fold_change()
Fold change
summary_statistics()
Summary statistics
summarize_results()
Statistics cleaning

Supervised learning

muvr_analysis()
Multivariate modelling with minimally biased variable selection (MUVR)
mixomics_pls() mixomics_pls_optimize() mixomics_spls_optimize()
PLS
mixomics_plsda() mixomics_plsda_optimize() mixomics_splsda_optimize()
PLS-DA
fit_rf()
Fit Random Forest
importance_rf()
Feature importance in random forest
perform_permanova()
PERMANOVA

Feature wise visualizations

save_beeswarm_plots()
Save beeswarm plots of each feature by group
save_group_boxplots()
Save box plots of each feature by group
save_scatter_plots()
Save scatter plots of each feature against a set variable
save_subject_line_plots()
Save line plots with mean
save_group_lineplots()
Save line plots with errorbars by group

Results visualizations

plot_p_histogram()
Histogram of p-values
volcano_plot()
Volcano plot
manhattan_plot()
Manhattan plot
mz_rt_plot()
Plot m/z vs retention time plot (cloud plot)
plot_effect_heatmap()
Heatmap of effects between variables, such as correlations

Object utilities

read_from_excel()
Read formatted Excel files
construct_metabosets()
Construct MetaboSet objects
write_to_excel()
Write results to Excel file
group_col() `group_col<-`()
Get and set name of the special column for group labels
time_col() `time_col<-`()
Get and set the name of the special column for time points
subject_col() `subject_col<-`()
Get and set the name of special column for subject identifiers
flag() `flag<-`()
Get and set the values in the flag column
drop_flagged()
Drop flagged features
drop_qcs()
Drop QC samples
join_fData()
Join new columns to feature data
join_pData()
Join new columns to pheno data
join_rowData()
Join new columns to feature data
join_colData()
Join new columns to pheno data
combined_data()
Retrieve both sample information and features
merge_metabosets()
Merge MetaboSet objects together
merge_objects()
Merge SummarizedExperiment objects together
fix_object()
Fix object for functioning of notame
combined_data(<MetaboSet>) group_col(<MetaboSet>) `group_col<-`(<MetaboSet>) time_col(<MetaboSet>) `time_col<-`(<MetaboSet>) subject_col(<MetaboSet>) `subject_col<-`(<MetaboSet>) flag(<MetaboSet>) `flag<-`(<MetaboSet>) join_fData(<MetaboSet>,<data.frame>) join_pData(<MetaboSet>,<data.frame>)
An S4 class used to represent LC-MS datasets

Other utilities

citations()
Show citations
init_log()
Initialize log to a file
log_text()
Log text to the current log file
finish_log()
Finish a log
save_plot()
Save plot to chosen format
fix_MSMS()
Transform the MS/MS output to publication ready

Datasets

Package

notame notame-package
notame package.